- Aircraft History, Specification and Information -
Robinson R22
Robinson R22 Beta - HB-XZN - Airport Helicopter Basel
1993 Robinson R22 Beta
HB-XZN (sn 2332)
Airport Helicopter Basel.
Photo taken Aug. 2009
Luzern-Beromunster Airport, Switzerland (LSZO)
Photo © Marcel Siegenthaler
Robinson R-22 Beta - European Helicopter Center (EHC) - LN-OZF
Robinson R-22 Beta
LN-OZF (cn 4148)
European Helicopter Center (EHC)
Photo taken February 23, 2008
Sandefjord Torp Airport, Norway (TRF / ENTO)
Photo Copyright & Thanks to
Arkadiusz Piotrowiak (EPBY Spotting Team)
Robinson R-22 Mariner Helicopter - Helitour Oy - OH-HSL
Robinson R-22 Mariner
OH-HSL (sn 2008M)
Helitour Oy
Photo taken December 16, 2007
Helsinki Malmi Airport, Finland (HEM / EFHF)
Photo Copyright & Thanks to
Sampo Kiviniemi

The Robinson R22 is a two-bladed, single-engine light utility helicopter manufactured by Robinson Helicopter. The two-seat R22 was designed in 1973 by Frank Robinson and has been in production since 1979.

Development

Due to relatively low acquisition and operating costs, the R22 has been popular as a primary rotorcraft trainer around the world and as a livestock management tool on large ranches in North America and cattle stations in Australia. The R22 has a very low inertia rotor system and the control inputs are operated directly by push rods with no hydraulic assistance. Thus, the flight controls are very sensitive and require a light touch to avoid over correcting. A student that masters an R22 generally does not have a problem transitioning to a heavier helicopter. Due to the issues relating to a low inertia rotor-system and a teetering main rotor, operation by any pilot of the Robinson R-22 or R-44 requires a special endorsement by a certified flight instructor (SFAR No. 73 to Part 61 in the Federal Aviation Regulations).

Maverick and Renegade UAVs
The R22 is the basis for Boeing's Maverick military unmanned aerial vehicle helicopter, and its Renegade version. In 1999, Frontier Systems developed a remotely piloted R22, the Maverick. This aircraft, along with the company, was later acquired by Boeing Phantom Works. In 2003 the U.S. Navy purchased four aircraft, equipped with Wescam EO/IR (Electro-Optical/Infrared) systems.

Boeing then modified one of the Mavericks further, calling it the Renegade, under contract with DARPA as a research testbed to develop software for its A160 Hummingbird. The software system, known as the Software Enabled Control (SEC) program, was developed by Boeing and teams from the University of California Berkeley, Georgia Institute of Technology and Massachusetts Institute of Technology, and was first flown on May 26, 2005. During the flight, the SEC assumed control of the aircraft to "execute autonomous maneuvering algorithms". The software allows the aircraft to autonomously select "optimal routes through a field of pop-up and already-known threats; flying low-level, terrain-hugging profiles to avoid detection; and determining safe landing zones by using vision-based algorithms to process landing site imagery and terrain height information."

Design

The R-22 is a single-engined helicopter with a semi-rigid two-bladed main rotor and a two-bladed tail rotor. The main rotor provides a teetering hinge and two coning hinges. The tail rotor provides only a teetering hinge.

The normal production variant has skid landing gear. The Mariner version provided floats. Wheeled gear is not available.

The basic structure is welded chrome moly tubing. The forward fuselage is made of fiberglass and aluminum with a Plexiglas canopy. The tailcone, vertical and horizontal stabilizers are aluminum. It has an enclosed cabin with side-by-side seating for a pilot and passenger. The doors may be removed for flight, and are often done so for photographic flights, interior cooling in high temperatures, or a 10.4 lb weight saving.

The first version was produced as the R22, followed by the R22 HP, R22 Alpha, R22 Beta and R22 Beta II. Superficially, the aircraft appear similar. The R22 HP was fitted with a 160 bhp Lycoming 0-320-B2C engine, an increase of 10 bhp (7.5 kW) over the original R22. The landing skid assembly on the R22 Alpha was modified by extending the rear struts, giving it a slightly nose-down attitude on the ground and better matching its attitude in a low altitude hover. The R22 Beta added an engine speed governor, rotor brake and auxiliary fuel tank. It has been offered as an instrument trainer version, with optional fixed floats as the R22 Mariner, and other special configurations for police work, electronic news gathering, and so on. The R22 Beta II added a Lycoming 0-360 engine, remade of lightweight materials and derated for sealevel operation. It allows greater altitudes for hovering in and out of ground effect (HIGE/HOGE). The R22 Beta II also includes a "carb heat assist" which correlates adding carb heat with decrease in collective control. Only the basic skid style is currently being sold. The R44 is available as the Clipper with floats, and as police and electronics news configurations.

Controls
Instead of a floor-mounted cyclic stick between the pilot's knees, the R22 uses a unique teetering "T-Bar" control connected to a stick that emerges from the console between the seats. This makes it easier for occupants to enter and exit the cabin and reduces chances for injury in the event of a hard landing. The teeter bar has a hand grip on both sides that hangs down between the pilots' legs. Thus, if teetered to the right, the right side pilot would be flying and the left grip would be about 12 inches above the left pilot's lap. R22 flight instructors quickly learn how to fly with their hand in the air. The left part of the bar, left collective control, and left tail rotor pedals can be removed if the left seat occupant is not certificated to fly the R22 or needs the room for technical or observer duties.

The helicopter rotor system consists of a two-bladed main rotor and two-bladed anti-torque rotor on the tail, each equipped with a teetering hinge. The main rotor is equipped with two coning hinges. Collective and cyclic pitch inputs to the main rotor are transmitted through pushrods and a conventional swashplate mechanism. Control inputs to the tail rotor are transmitted through a single pushrod inside the aluminum tail cone.

To ease the pilot's workload, a mechanical throttle correlator adjusts the throttle as the collective pitch control is raised or lowered. The pilot only needs to make small adjustments by twisting the throttle grip on the collective throughout the flight regime. Later models are also equipped with an electronic governor which works to maintain RPM within normal operating limits (between 97 and 104% RPM); the governor is only active when the engine is running above 80% RPM, and is most effective in normal flight conditions.

Powerplant
The R22 uses a horizontally mounted Lycoming O-320 (O-360-J2A on the Beta II), four-cylinder, air-cooled, normally-aspirated, carburetor-equipped piston engine. It is fueled with 100LL grade aviation gasoline. Cooling is provided through a direct drive squirrel-cage blower. At sea level it is capable of producing more power than the transmission and rotor system can safely handle, and to ensure maximum engine and transmission life the O-360 must be derated, or operated at less than maximum power. As the air becomes thinner with increasing altitude, maximum available horse power decreases, reaching a point where the throttle can be completely open and rotor RPM is controlled by collective position. By derating the engine at sea level, the R22 achieves acceptable high-altitude performance without use of supercharging or turbocharging, thus saving the weight, complexity, unreliability, and shortened engine life of a forced induction system.

A carburetor is used to provide the air-fuel mixture. Carbureted engines are susceptible to carburetor icing, a condition most likely to occur in conditions of low (11°C) difference between the outside air temperature and dew point (the "dew point spread"), as well as visible signs of moisture in the atmosphere. Icing can lead to loss of engine power, and if not corrected total shutdown of the engine. A carburetor heat control is available to supply heated air to the carburetor; this can prevent or cure icing, but also causes a reduction in engine power output because hot air is less dense. The R22 employs a carburetor air temperature gauge, marked to indicate temperatures conducive to icing. The Beta II version of the R22 also includes a "carburetor heat assist" which automatically applies carburetor heat when the collective is lowered below a certain point. When icing conditions are present carburetor heat is required to prevent icing around the butterfly valve from the pressure drop at that point. As the Carburetor Air Temperature (CAT) indicator does not read correctly below 18" of intake manifold pressure, icing conditions require applying full carburetor heat below 18" of manifold pressure. A placard indicating this requirement is located on the CAT indicator and in the Pilots Operating Handbook (POH).

Power is transmitted from the engine to the rotor system through a drive belt. Originally, the R22 used separate v-belts. This system proved problematic, as belt length variations due to manufacturing tolerances caused some belts to overstress and break. The problem was solved by replacing the individual belts with a single multi-v belt, running on matching multi-groove sheaves. The upper driven sheave is mounted on the tail rotor drive shaft next to a flexible coupling and is raised and lowered relative to the engine-mounted driving sheave by means of a small electric gear motor. During shutdown, the gear motor is used to lower the top sheave to loosen the drive belts. For startup, the engine is started with the belts loose, allowing the engine to run without spinning the rotor system. Immediately after engine start, the clutch switch located in the cockpit is closed by the pilot, powering the gear motor to slowly move the top sheave up to flight position which tightens the belts. The gear motor is thereafter controlled by a pressure-sensing switch, automatically maintaining proper belt tension during flight as the belts warm up and stretch. The tail rotor drive shaft also turns the main transmission, delivering power to the main rotor shaft through a pair of spiral bevel gears.

The top sheave has an over-running clutch built in to the middle to allow the rotor system to continue to rotate in the event the engine stops. This allows the R22 to enter auto rotation and land in a controlled manner after loss of engine power. Because the main rotor has very little mass and resulting inertia, auto rotations in an R22 are exciting at best and require careful and proper execution to assure a successful outcome. Much time is spent in training practicing various types of auto rotation. Target speed in an auto rotation is 65 kn (120 km/h) and the glide angle is approximately 4:1.

Service life
After 2200 hours of flight time, the R22 must undergo an extensive overhaul performed by the Robinson factory in Torrance, California (at the Torrance Municipal Airport), or a factory authorized service center in which many of the critical components of the helicopter are checked and replaced. After 4400 hours of flight the R22 undergoes an even more extensive overhaul, and is considered to be a "new" helicopter once the overhaul is completed.

Variants

Robinson R22
Initial production version powered by a Lycoming O-320-A2B or A2C piston engine.

Robinson R22 HP
Higher-powered version, powered by a 160-bhp Lycoming 0-320-B2C piston engine.

Robinson R22 Alpha
Improved version certified in 1983 powered by a Lycoming 0-320-B2C piston engine.

Robinson R22 Beta
Fitted with a more powerful engine, powered by a Lycoming 0-320-B2C piston engine.

Robinson R22 Beta II
Fitted with a more powerful engine, powered by a Lycoming O-360-J2A piston engine.

Robinson R22 Beta II Police
Police patrol version, equipped with searchlight and loudspeaker.

Robinson R22 Mariner
Designed for off-shore work, fitted with floats and wheels, powered by a Lycoming 0-320-B2C Beta piston engine. Limited to daylight operations when fitted with floats.

Robinson R22 Mariner II
Designed for off-shore work, fitted with floats and wheels, powered by a Lycoming O-360-J2A Beta II piston engine. Limited to daylight operations when fitted with floats.

Robinson R22 Police
Police version.

Robinson R22 IFR
Designed for IFR training with a larger 10 hole panel to accommodate additional instruments. Not IFR certified so training must be done with a safety pilot in VFR conditions.

Robinson R22 Agricultural

Maverick UAV
Unmanned military version marketed by Boeing

Renegade UAV
Unmanned R&D version built for DARPA

Robinson R22 GT
"Glass Trainer" version of Specialized Helicopters LLC.

Operators

The R-22 is operated by many private individuals, companies and flying clubs.

Military
Dominican Republic - Dominican Republic Army
Philippines - Philippine Navy

Accidents and incidents

The R22 has had 180 fatal accidents between December 1975 and November 2009 from a total of 1,222 incidents involving the Robinson R22.

Specifications (Robinson R22)

General characteristics
Crew: 1
Length: 28 ft 8 in (8.7 m)
Rotor diameter: 25 ft 2 in (7.7 m)
Height: 8 ft 11 in (2.7 m)
Disc area: 497 ft² (46.2 m²)
Empty weight: 796 lb (389 kg)
Loaded weight: 920 lb (417 kg)
Max takeoff weight: 1,370 lb (635 kg)
Powerplant: 1× Lycoming O-320-A2B or -A2C flat 4 piston engine, 124 hp (93 kW)
Main tank total capacity: 19.8 US gallons (75 liters)
Main tank usable capacity: 19.2 US gallons (73 liters)
Optional aux tank total capacity: 10.9 US gallons (41 liters)
Optional aux tank usable capacity: 10.5 US gallons (40 liters)

Performance
Never exceed speed: 117 mph, 189 km/h, 102 kts
Cruise speed: 99 mph, 160 km/h, 86 kts
Range: 240 mi (386 km)
Service ceiling: 14,000 ft (4,267 m)
Rate of climb: 1,200 ft/min (6.1 m/s)
Disc loading: 2.61 lb/ft² (13.7 kg/m²)
Power/mass: 0.095 hp/lb (0.147 kW/kg)
Endurance: approx. 2 hours, with 30-minute reserve

Last updated April 06, 2010
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Robinson R22".
By use of this site, you accept the Terms And Conditions Of Use | Privacy Policy | Contact Us
Copyright © 2004-2012 Airplane Mart Publishing. All rights reserved.